Понятия со словосочетанием «теория автоматов»

Теория автоматов — раздел дискретной математики, изучающий абстрактные автоматы — вычислительные машины, представленные в виде математических моделей — и задачи, которые они могут решать.

Связанные понятия

Алгоритмика — раздел информатики, дисциплина, изучающая алгоритмы и их применение к решению задач.
Прикладна́я матема́тика — область математики, рассматривающая применение математических методов, алгоритмов в других областях науки и техники. Примерами такого применения будут: численные методы, математическая физика, линейное программирование, оптимизация и исследование операций, моделирование сплошных сред (Механика сплошных сред), биоматематика и биоинформатика, теория информации, теория игр, теория вероятностей и статистика, финансовая математика и актуарные расчёты, криптография, а следовательно...
Дискретная дифференциальная геометрия — раздел математики, в котором исследуются дискретные аналоги объектов дифференциальной геометрии: вместо гладких кривых и поверхностей рассматриваются многоугольники, полигональные сетки и симплициальные комплексы.
Вычислительная топология или алгоритмическая топология — дисциплина, находящаяся на пересечении топологии, вычислительной геометрии и теории вычислительной сложности. Её основными задачами являются создание эффективных алгоритмов для решения топологических проблем и применение топологических методов для решения алгоритмических проблем, возникающих в других областях науки.
Вычислительная теория групп — область науки на стыке математики и информатики, изучающая группы с помощью вычислительных машин. Она связана с проектированием, анализом алгоритмов и структур данных для вычисления различных характеристик (чаще всего — конечных) групп. Область интересна исследованием важных с различных точек зрения групп, данные о которых невозможно получить вычислениями вручную.
Многомерный комплексный анализ — раздел математики, изучающий голоморфные функции нескольких комплексных переменных, определенные в многомерном комплексном пространстве, голоморфные отображения и подмногообразия комплексного пространства. Начало систематическому изучению многомерных комплексных функций было положено К. Вейерштрассом и А. Пуанкаре в конце XIX века. А. Пуанкаре распространил на функции нескольких переменных основную теорему Коши и заложил основы многомерной теории вычетов. Методы многомерного...
Теоретическая информатика — это научная область, предметом изучения которой являются информация и информационные процессы, в которой осуществляется изобретение и создание новых средств работы с информацией. Это подразделение общей информатики и математики, которое сосредотачивается на более абстрактных или математических аспектах вычислительной техники и включает в себя теорию алгоритмов.
Дискре́тное программи́рование (дискретная оптимизация) — раздел математического программирования.
Дискре́тная матема́тика — часть математики, изучающая дискретные математические структуры, такие, как графы и утверждения в логике.
Математическая константа или математическая постоянная — величина, значение которой не меняется; в этом она противоположна переменной. В отличие от физических постоянных, математические постоянные определены независимо от каких бы то ни было физических измерений.
Операторная алгебра — алгебра операторов, действующих на топологическом векторном пространстве. Операторные алгебры активно применяются в теории представлений и в дифференциальной геометрии, в квантовой механике и в квантовой статистической физике, в квантовой теории поля и в современной классической механике.
Функциональный анализ — раздел анализа, в котором изучаются бесконечномерные топологические векторные пространства и их отображения.
Теория вычислимости, также известная как теория рекурсивных функций, — это раздел современной математики, лежащий на стыке математической логики, теории алгоритмов и информатики, возникшей в результате изучения понятий вычислимости и невычислимости. Изначально теория была посвящена вычислимым и невычислимым функциям и сравнению различных моделей вычислений. Сейчас поле исследования теории вычислимости расширилось — появляются новые определения понятия вычислимости и идёт слияние с математической...
Математи́ческая фи́зика — теория математических моделей физических явлений. Она относится к математическим наукам; критерий истины в ней — математическое доказательство. Однако, в отличие от чисто математических наук, в математической физике исследуются физические задачи на математическом уровне, а результаты представляются в виде теорем, графиков, таблиц и т. д. и получают физическую интерпретацию. При таком широком понимании математической физики к ней следует относить и такие разделы механики...
Интерполяция линейных операторов — направление функционального анализа. рассматривающее банаховы пространства как элементы некоторой категории. Общая теория интерполяции линейных операторов была разработана, начиная с 1958 года, в работах С. Г. Крейна, Ж.-Л. Лионса, Ж. Петре. Имеет многочисленные приложения в теории рядов Фурье, в теории приближений, в теории уравнений в частных производных.
Высшая математика — курс обучения в средних и высших учебных заведениях, включающий высшую алгебру и математический анализ.
Квантовая информатика — раздел науки, возникший в конце XX века на стыке квантовой механики, теории алгоритмов и теории информации. В квантовой информатике изучаются общие принципы и законы, управляющие динамикой сложных квантовых систем. Моделью таких систем является квантовый компьютер.
Геометрическая теория групп — область математики, изучающая конечно-порождённые группы с помощью связей между их алгебраическими свойствами и топологическими и геометрическими свойствами пространств, на которых такие группы действуют, либо самих групп, рассматриваемых как геометрические объекты (что обычно делается рассмотрением графа Кэли и соответствующей словарной метрики).
Алгебры вершинных операторов впервые были введены Ричардом Борчердсом (англ.) в 1986 году. Имеет важное значение для теории струн, конформной теории поля (англ.) и для смежных областей физики. Аксиомы алгебры вершинных операторов — это формальная алгебраическая интерпретация того, что физики называют хиральной алгеброй.
Комбинаторная оптимизация — область теории оптимизации в прикладной математике, связанная с исследованием операций, теорией алгоритмов и теорией вычислительной сложности.
Гомологическая алгебра — ветвь алгебры, изучающая алгебраические объекты, заимствованные из алгебраической топологии. Первыми гомологические методы в алгебре применили в 40-х годах XX века Фаддеев, Дмитрий Константинович, С. Эйленберг и С. Маклейн при изучении расширений групп.
Вторичное дифференциа́льное исчисле́ние — раздел современной математики, который расширяет классическое дифференциальное исчисление на многообразиях до пространства решений нелинейных дифференциальных уравнений в частных производных. Заслуга открытия вторичного дифференциального исчисления принадлежит профессору Александру Михайловичу Виноградову.
Топологическая комбинаторика — это молодая область математики, возникшая в последней четверти 20-го века, которая занимается следующими вопросами...
Ве́кторное исчисле́ние — раздел математики, в котором изучаются свойства операций над векторами. В связи с разнообразием особенностей векторов, зависящих от пространства, в котором они исследуются, векторное исчисление подразделяется на...
Анализ как современный раздел математики — значительная часть математики, исторически выросшая из классического математического анализа, и охватывающая, кроме дифференциального и интегрального исчислений, входящих в классическую часть, такие разделы, как теории функций вещественной и комплексной переменной, теории дифференциальных и интегральных уравнений, вариационное исчисление, гармонический анализ, функциональный анализ, теорию динамических систем и эргодическую теорию, глобальный анализ. Нестандартный...
Общая алгебра (также абстрактная алгебра, высшая алгебра) — раздел математики, изучающий алгебраические системы (также иногда называемые алгебраическими структурами), такие как группы, кольца, поля, модули, решётки, а также отображения между такими структурами.
Вычисли́тельная меха́ника — раздел механики сплошных сред, в котором строятся конечномерные модели сплошных сред, используется компьютерное моделирование и численные методы для решения задач механики деформируемого твёрдого тела и механики жидкостей.
Метод обобщений (математика) — метод математического творчества, в котором в процессе формирования математического понятия более широкого объёма отбрасываются все второстепенные данные и акцентируется внимание на основных фактах. Этот метод...
Вычислительная химия — раздел химии, в котором математические методы используются для расчёта молекулярных свойств, моделирования поведения молекул, планирования синтеза, поиска в базах данных и обработки комбинаторных библиотек. Вычислительная химия использует результаты классической и квантовой теоретической химии, реализованные в виде эффективных компьютерных программ, для вычисления свойств и определения структуры молекулярных систем. В квантовой химии компьютерное моделирование заменило не только...
Квантовая информация — основной предмет изучения квантовой информатики — раздела науки на стыке квантовой механики и теории информации, включающей вопросы квантовых вычислений и квантовых алгоритмов, квантовых компьютеров и квантовой телепортации, квантовой криптографии и проблемы декогерентности.
Гармони́ческий ана́лиз (или фурье́-ана́лиз) — раздел математического анализа, в котором изучаются свойства функций с помощью представления их в виде рядов или интегралов Фурье. Также метод решения задач с помощью представления функций в виде рядов или интегралов Фурье.
Символьные вычисления — это преобразования и работа с математическими равенствами и формулами как с последовательностью символов. Они отличаются от численных расчётов, которые оперируют приближёнными численными значениями, стоящими за математическими выражениями. Системы символьных вычислений (их так же называют системами компьютерной алгебры) могут быть использованы для символьного интегрирования и дифференцирования, подстановки одних выражений в другие, упрощения формул и т. д.
Дифференциа́льная геоме́трия и дифференциальная тополо́гия — два смежных раздела математики, которые изучают гладкие многообразия, обычно с дополнительными структурами.
Квантова́ние — процедура построения чего-либо с помощью дискретного набора величин, например, целых чисел, в отличие от построения с помощью непрерывного набора величин, например, вещественных чисел.
Тополо́гия (от др.-греч. τόπος — место и λόγος — слово, учение) — раздел математики, изучающий...
Метаматематика — раздел математической логики, изучающий основания математики, структуру математических доказательств и математических теорий с помощью формальных методов. Термин «метаматематика» буквально означает «за пределами математики».
Математическая биология — это междисциплинарное направление науки, в котором объектом исследования являются биологические системы разного уровня организации, причём цель исследования тесно увязывается с решением некоторых определённых математических задач, составляющих предмет исследования. Критерием истины в ней является математическое доказательство. Основным математическим аппаратом математической биологии является теория дифференциальных уравнений и математическая статистика.
Нелинейное управление — подраздел теории управления, изучающий процессы управления в нелинейных системах. Поведение нелинейных систем не может быть описано линейными функциями состояния или линейными дифференциальными уравнениями.
Универсальная алгебраическая геометрия (другое название — алгебраическая геометрия над алгебраическими системами) — направление в математике, изучающее связи между элементами алгебраической системы, выражаемые на языке алгебраических уравнений над алгебраическими системами. Классическая алгебраическая геометрия — это конкретный пример алгебраической геометрии над алгебраическими системами для случая алгебраического поля, в универсальном случае используется инструментарий универсальной алгебры для...
Элементарная математика — несколько неопределённое понятие, охватывающее те разделы математики, которые изучаются в средней школе.
Оптимизация — в математике, информатике и исследовании операций задача нахождения экстремума (минимума или максимума) целевой функции в некоторой области конечномерного векторного пространства, ограниченной набором линейных и/или нелинейных равенств и/или неравенств.
Математические методы в социологии — методы статистического анализа данных и методы математического моделирования социальных явлений и процессов.
Аналитическая механика — раздел теоретической механики и теоретической физики, в котором формулируются и используются общие принципы (дифференциальные или интегральные) механики, на их основе выводятся основные дифференциальные уравнения движения, исследуются сами уравнения и методы их интегрирования.
Вычисли́тельная фи́зика — это наука, изучающая численные алгоритмы решения задач физики, для которых количественная теория уже разработана. Обычно рассматривается как раздел теоретической физики, но некоторые считают её промежуточной ветвью между теоретической и экспериментальной физикой.
Общая топология, или теоретико-множественная топология, — раздел топологии, в котором изучаются понятия «непрерывности» и «предела» в наиболее общем смысле.
Семантические вычисления (англ. Semantic computing) — направление информатики, находящееся на стыке семантического анализа, обработки естественного языка, интеллектуального анализа данных и ряда других направлений.
Прострáнством называется математическое множество, имеющее структуру, определяемую аксиоматикой свойств его элементов (например, точек в геометрии, векторов в линейной алгебре, событий в теории вероятностей и так далее).Подмножество пространства называется «подпространством», если структура пространства индуцирует на этом подмножестве структуру такого же типа (точное определение зависит от типа пространства).

Подробнее: Пространство (математика)
Номография (от др.-греч. νόμος — закон и γράφω — пишу) — область математики, охватывающая теорию и практику применения в вычислительной работе графического представления функциональных зависимостей — номограмм. Отмечается, что при переходе к номографическим методам большие объёмы сложных вычислительных действий могут быть часто заменены ограниченным числом элементарных геометрических операций на номограмме.
а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я